Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 14(5): 3103-3114, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38449530

RESUMO

The reconstruction of ancestral sequences can offer a glimpse into the fascinating process of molecular evolution by exposing the adaptive pathways that shape the proteins found in nature today. Here, we track the evolution of the carbohydrate-active enzymes responsible for the synthesis and turnover of mannogen, a critical carbohydrate reserve in Leishmania parasites. Biochemical characterization of resurrected enzymes demonstrated that mannoside phosphorylase activity emerged in an ancestral bacterial mannosyltransferase, and later disappeared in the process of horizontal gene transfer and gene duplication in Leishmania. By shuffling through plausible historical sequence space in an ancestral mannosyltransferase, we found that mannoside phosphorylase activity could be toggled on through various combinations of mutations at positions outside of the active site. Molecular dynamics simulations showed that such mutations can affect loop rigidity and shield the active site from water molecules that disrupt key interactions, allowing α-mannose 1-phosphate to adopt a catalytically productive conformation. These findings highlight the importance of subtle distal mutations in protein evolution and suggest that the vast collection of natural glycosyltransferases may be a promising source of engineering templates for the design of tailored phosphorylases.

2.
Curr Opin Biotechnol ; 78: 102804, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36156353

RESUMO

The commercial value of specialty carbohydrates and glycosylated compounds has sparked considerable interest in the synthetic potential of carbohydrate-active enzymes (CAZymes). Protein engineering methods have proven to be highly successful in expanding the range of glycosylation reactions that these enzymes can perform efficiently and cost-effectively. The past few years have witnessed meaningful progress in this area, largely due to a sharper focus on the understanding of structure-function relationships and mechanistic intricacies. Here, we summarize recent studies that demonstrate how protein engineers have become much better at traversing the fitness landscape of CAZymes through mutational bridges that connect the different activity types.


Assuntos
Carboidratos , Proteínas , Glicosilação , Enzimas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...